Cloning of cDNA coding for peroxisomal acyl-CoA oxidase from the yeast Candida tropicalis pK233.
نویسندگان
چکیده
Candida tropicalis pK233 cells were grown with n-alkanes as carbon source to induce the synthesis of peroxisomal proteins and the proliferation of peroxisomes. Poly-(A)+ RNA was isolated and used to construct a cDNA library by insertion of double-stranded reverse transcripts into the Pst I site of pBR322 followed by cloning in Escherichia coli. Clones complementary to mRNAs induced by growth on alkanes were selected by differential DNA dot-blot analysis using [32P]cDNA reverse-transcribed from poly(A)+ RNA of glucose-grown cells (which contain few peroxisomes) or of alkane-grown cells. Among these clones, one containing a 1.7-kilobase insert coding for acyl-CoA oxidase (the first enzyme in the peroxisomal Beta-oxidation pathway) was identified by hybridization-selection translation and immunoprecipitation. By RNA blot analysis, the acyl-CoA oxidase mRNA was estimated to be approximately equal to 2.2 kilobases long, of which 2.1 kilobases are required to code for the approximately equal to 76-kDa protein. Since the mRNA is polyadenylylated, there appears to be little additional nontranslated region. Cell-free mRNA translation and RNA dot-blot hybridization analyses demonstrated that, whereas glucose-grown C. tropicalis contained little or no acyl-CoA oxidase mRNA, alkane-grown cells contained so much of this mRNA as to make acyl-CoA oxidase one of the major in vitro translation products.
منابع مشابه
Import of the carboxy-terminal portion of acyl-CoA oxidase into peroxisomes of Candida tropicalis
We report the sequence of a cDNA clone that codes for the carboxy-terminal portion of the peroxisomal protein, acyl-CoA oxidase, from the yeast, Candida tropicalis. This is a newly identified acyl-CoA oxidase sequence, most likely a second allele of POX4. The cDNA clone was expressed by in vitro transcription followed by translation. The major product, a 43-kD protein, associated with isolated ...
متن کاملAnalysis of the peroxisomal acyl-CoA oxidase gene product from Pichia pastoris and determination of its targeting signal.
Acyl-CoA oxidase (Pox1p) is involved in the beta-oxidation of fatty acids and is targeted to the peroxisomal matrix via the use of different signals in various organisms. In rat, mouse and human, Pox1p contains a canonical peroxisomal targeting signal 1 (PTS1), whereas in the yeasts Candida tropicalis, Saccharomyces cerevisiae, C. maltosa and Yarrowia lipolytica neither a PTS1 nor a PTS2 sequen...
متن کاملAn n-alkane-responsive promoter element found in the gene encoding the peroxisomal protein of Candida tropicalis does not contain a C(6) zinc cluster DNA-binding motif.
When an asporogenic diploid yeast, Candida tropicalis, is cultivated on n-alkane, the expression of the genes encoding enzymes of the peroxisomal beta-oxidation pathway is highly induced. An upstream activation sequence (UAS) which can induce transcription in response to n-alkane (UAS(ALK)) was identified on the promoter region of the peroxisomal 3-ketoacyl coenzyme A (CoA) thiolase gene of C. ...
متن کاملSubstrate specificities of peroxisomal members of short-chain alcohol dehydrogenase superfamily: expression and characterization of dehydrogenase part of Candida tropicalis multifunctional enzyme.
In addition to several other enzymes, the short-chain alcohol dehydrogenase superfamily includes a group of peroxisomal multifunctional enzymes involved in fatty acid and cholesterol side-chain beta-oxidation. Mammalian peroxisomal multifunctional enzyme type 2 (perMFE-2) is a 2-enoyl-CoA hydratase-2/(R)-3-hydroxyacyl-CoA dehydrogenase. As has been shown previously, perMFE-2 hydrates (24E)-3alp...
متن کاملCloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica.
The ACO3 gene, which encodes one of the acyl-CoA oxidase isoenzymes, was isolated from the alkane-utilizing yeast Yarrowia lipolytica as a 10 kb genomic fragment. It was sequenced and found to encode a 701-amino acid protein very similar to other ACOs, 67.5% identical to Y. lipolytica Aco1p and about 40% identical to S. cerevisiae Pox1p. Haploid strains with a disrupted allele were able to grow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 12 شماره
صفحات -
تاریخ انتشار 1985